CARBON-13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
OF NATURALLY OCCURRING SUBSTANCES. PROSTAGLANDINS ${ }^{1,2}$

Gabor Lukacs, François Piriou and Stephan D. Gero
(Institut de Chimie des Substances Naturelles, 91190 Gif sur Yvette, France)
David A. Van Dorp
(Unilever Research Laboratory, Vlaardingen, Netherlands) and Edward W. Hagaman and Ernest Wenkert
(Department of Chemistry, Indiana University, Bloomington, Indiana 47401, USA)

(Received in UK 22 December 1972; accepted for publiontion 8 January 1973)

We wish to report the first natural abundance ${ }^{13} \mathrm{C} \mathrm{nmr}$ study of the prostaglandins, ${ }^{3}$ chemical shift analysis of members of the PGE ($1,2 \underset{\sim}{2}$) , PGF ($2 \mathrm{~d} \mathrm{k}-\mathrm{d}$) and PGA (3) groups and interpretation of the data in terms of the solution hehavior of these biologically important substances.

The shifts (Table 1) of carbons $1,2,3,9,18,19$ and 20 of $P G E_{1}(1)$ and $P G E_{2}$ (2a) and $C(6)$ of the former are based on models. ${ }^{4}$ Those of carbons 4,5 and 7 of 1 and 4 and 7 of $\underset{\sim}{2}$ are founded on the calculated effect of a double bond upon its neighbors. ${ }^{5}$ Being a α-keto- α^{1}. hydroxycarbinylmethylene, $\mathrm{C}(10)$ is the lowest-field methylene in the two substances. Its signal disappears in the spectrum of dienone 3. The $C(16)$ and $C(17)$ shifts are consistent

among all C(15) alcohols and change predictably in their acetates. The PGE methines $C(8)$ and $C(12)$ are undifferentiable, while $C(11)$ and $C(15)$ are distinguished by the shift constancy of the latter in all 15-ols. The structural difference of PGE_{1} and $P G E_{2}$ identifies the olefinic carbon pairs. Calculation ${ }^{5}$ distinguishes $C(5)$ from $C(6)$, whereas differentiation of C (13) from $C(14)$ emanates from analysis of the PGF series (vide infra).

The shifts of the acid sidechain of PGA_{1} acetate (3) are recognized from the spectrum of 1, those of the ester sidechain from that of $2 \mathcal{N}^{d}$ (vide infra) and those of $C(9), C(10)$ and $C(11)$ from that of cyclopentenone. ${ }^{6} C(8)$ and $C(12)$ are undifferentiable. Shift assignment of $\mathrm{C}(1), \mathrm{C}(20)$ and the methylenes of $\mathrm{PGF}{ }_{2}$ alcohols 2 b and $2 c$ stems from spectral comparison with $\operatorname{PGE}_{2}(2 a)$ and expected shift changes at $\mathrm{C}(10), \mathrm{C}(16)$ and $\mathrm{C}(17)$ in $\mathrm{PGF}_{2 \alpha}$ triacetate (20..$^{7} \mathrm{C}(8)$ and $\mathrm{C}(12)$ show a greater shift disparity in the PGF than PGE series, $C(8)$ being predictably shielded in the 9 -ols. The $C(15)$ shift being established (vide supra), the remaining oxymethine signals of 2 b and 2 c are identified from spectra of 9 -deuterio compounds (from borodeuteride reduction of PGE_{2}).

Comparison of the cmr data of $\mathrm{PGE}_{1}(\underset{\sim}{1})$ and PGA_{1} acetate (3) in light of the magnitude and direction of the allyl acetate effect 6,8 differentiates $C(13)$ from $\mathrm{C}(14)$ in the two compounds as well as in PGE_{2} (2a) and $\mathrm{PGF}_{2 \alpha}$ acetate (2d). Similar comparison of $\mathrm{PGF}_{2 \alpha}(\underset{\sim}{2} \mathrm{~b})$ and its triacetate (2 d) leads to shift assignment of the olefinic carbon pair in 2 w and 2 c . The $C(5)$ and $C(6)$ shifts of $2 d$, as those of 2 a (vide supra), are obtained by calculation. ${ }^{5}$ While the $C(5)$ and $C(6)$ resonances of the PGF_{2} alcohols are at lower field than those of ${ }_{2}^{2}$ and $\underset{\sim}{2 d}$, they maintain their shift relationship to each other.

The anomalous shifts of the Δ^{13}-linkage in the 11α-alcohols, as calculated from the allyl acetate effect, and of the Δ^{5}-linkage in the 9 -alcohols indicate hydrogen bonding between nuclear hydroxyl groups and their double bond neighbors in chloroform solution. The shift deviation is similar for the two Δ^{5}-carbons but dissimilar for the Δ^{13}-carbons, reflecting symmetrical hydrogen bonding in the former situation and unsymmetrical bonding favoring $C(14)$ in the latter case. These interactions, difficulty assessable by physical means other than cmr spectroscopy, are illustrated in the $\mathrm{PGF}_{2 \beta}$ stereostructure (4).

Table 1. Cmr Chemical Shifts ${ }^{2}$

	${\underset{\sim}{1}}^{\text {b }}$	$22^{\text {b }}$	$2 \mathrm{~b}^{\mathrm{b}}$	$2 c^{\text {b }}$	$2{ }_{\sim}^{2}$	3 Sc
C(1)	176.7	177.2	176.6	180.3	175.9	173.2
C(2)	33.8	33.4	33.2	33.1	32.9	34.0
C(3)	24.5	24.6	24.5	24.5	24.4	24.5
C(4)	29.0	26.5	28.3	26.3	26.1	28.9
C(5)	28.6	131.0	132.8	133.2	131.1	28.6
C(6)	26.3	126.7	$128.9{ }^{\text {d }}$	127.8	127.3	26.5
C(7)	27.4	25.2	25.1	25.1	24.4	28.2
C(8)	$54.6{ }^{\text {d }}$	$54.6{ }^{\text {d }}$	49.9	51.7	47.0	$51.8{ }^{\text {d }}$
C(9)	215.2	215.4	71.8	f	74.0	197.1
C(10)	45.9	46.2	42.6	41.9	38.4	$132.9{ }^{\text {e }}$
C(11)	71.6	72.0	77.2	73.7	77.6	164.7
C(12)	$54.2{ }^{\text {d }}$	$53.6{ }^{\text {d }}$	55.0	55.8	51.5	$51.0{ }^{\text {dg }}$
C(13)	131.9	131.7	$129.1{ }^{\text {d }}$	130.0	131.9	$132.3{ }^{\text {e }}$
C(14)	136.6	136.7	135.0	135.0	129.6	130.0
C(15)	72.9	73.2	72.9	72.9	74.0	74.1
C(16)	36.9	37.0	36.8	36.9	33.9	34.8
C(17)	25.0	25.2	25.1	25.1	24.4	23.8
C(18)	31.5	31.8	31.5	31.6	31.1	31.2
C(19)	22.5	22.7	22.4	22.4	22.1	22.2
C(20)	13.8	14.1	13.9	14.0	13.6	13.9

${ }^{\text {a }}$ Spectra taken at 15.08 MHz on a Fourier transform spectrometer ; chemical shifts in parts per million downfield from TMS.
$\mathrm{b}_{\text {In c. }}$. $10: 1 \mathrm{v} / \mathrm{v}$ chloroform-methanol solution ; $5^{\mathrm{TMS}}=\delta^{\mathrm{CHCl}_{3}}+77.2 \mathrm{ppm}$. $\mathrm{c}_{\text {In ca. }} 10: 1 \mathrm{v} / \mathrm{v}$ deuteriochloroform-methanol solution ; $\delta^{\mathrm{TMS}}=\delta^{\mathrm{CDCl}_{3}}+76.9 \mathrm{ppm}$. $d, e_{\text {Values in }}$ any vertical column may be reversed. ${ }^{f}$ Signal absent, $C(9)$ deuterated.
$g_{\text {Center of broad signal in spectrum of highly dilute solution. }}$

Acknowledgement : The authors are indebted to the Ono Pharmaceutical Company (Osaka, Japan) for generous samples of several prostaglandins.

REFERENCES

1 IX. For the preceding paper see Q.Khuong-Huu, G. Lukacs, A. Pancrazi and R. Goutarel (1972), Tetrahedron Letters, 3579.

2 XV. For previous papers see L.L. Martin, C.J. Chang, H.G. Floss, J.A. Mabe, E.W. Hagaman and E. Wenkert, J.Amer.Chem.Soc., in press ; G. Lukacs, F. Khuong-Huu, C.R. Bennett, B.L. Buckwalter, and E. Wenkert (1972), Tetrahedron Letters, 3515.

3 Prostaglandins, Ann. N.Y. Acad.Sci., 180 1-568, edited by P.W. Ramwell and J.E. Shaw (1971) ; J.E. Pike, (1971), Sci.Amer., 225 (5), 84.

4 D.M. Grant and E.G. Paul (1964), J.Amer.Chem.Soc., 86, 2984 ; R. Hagen and J.D. Roberts (1969), ibid., 91, 4504 ; F.J. Weigert and J.D. Roberts (1970), ibid., 92 1347.

5 D.E. Dorman, M. Jautelat, and J.D. Roberts (1971), J. Org. Chem., 36, 2757.

6 E. Wenkert and E.W. Hagaman, unpublished observations.

7 Cf. M. Christl, H.J. Reich and J.D. Roberts (1971), J. Amer. Chem.Soc., 93 3463.

8 E. Wenkert and E.W. Hagaman, submitted for publication.

